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Abstract

The self-similar elastoplastic field induced by dynamic expansion of a pressurized spherical cavity is investigated for

pressure sensitive solids. Material behavior is described by the hypoelastic model of the Drucker–Prager material with a

non-associated flow rule, with arbitrary strain-hardening. We examine in detail the external elastic field, which is ex-

pected to develop at a distance from the cavity prior to plastic yielding. A new observation that emerges from that

elastic solution is the possible existence of a compressive elastic zone where yielding is prevented since the effective stress

remains negative. Simple analytical solutions are given for the fully incompressible elastic/perfectly plastic material with

a non-associated flow rule. In particular, we study the influence of plastic pressure sensitivity on the dynamic cavitation

pressure. A few useful relations are derived for the cavitation pressure which reveal the coupled effect of plastic pressure

sensitivity and material inertia. A separate numerical analysis is given for the fully incompressible strain-hardening solid

with a non-associated flow rule. Several numerical illustrations are presented for the solid with an associated flow rule

along with a plastic boundary layer analysis for the thin singular zone near the cavity wall.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic elastoplastic field induced by a pressurized spherical cavity expanding in an infinite

medium is widely used in simulating penetration phenomena. The simplicity offered by the spherical

symmetric pattern of the deforming material leads to fairly simple, yet accurate, expressions for key

parameters like the resisting force and penetration depth. An extensive review of earlier work has been

given by Hopkins (1960) with emphasis on incompressible Mises elastic/perfectly plastic models. Elastic
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Nomenclature

A instantaneous radius of pressurized spherical cavity
_A cavity expansion velocity (constant)

C integration constant in the linear small strains elastic solution

CE linear elastic dilatation wave speed

D Eulerian strain rate tensor

E elastic modulus

G non-dimensionalized plastic potential

I second order unit tensor
K material parameter in the Ramberg–Osgood power law

M cavity expansion Mach number

Pc non-dimensionalized cavitation pressure

R radial coordinate of a spherical system
_R radial material velocity

S stress deviator tensor

V non-dimensionalized radial velocity

Y yield stress
g plastic potential

m non-dimensionalized cavity expansion velocity

n hardening index in the Ramberg–Osgood power law

pc cavitation pressure

v radial material velocity

R non-dimensionalized effective stress

Ry non-dimensional yield stress

Rr, Rh non-dimensionalized stresses
b elastic-compressibility parameter

d plastic boundary layer coordinate

� total strain

�p effective plastic strain
_�p effective plastic strain rate
_�r, _�h ¼ _�/ Eulerian strain rate components in spherical-symmetric field

g, l parameters to reflect the plastic pressure sensitivity

m Poisson’s ratio
n non-dimensional radial coordinate

ni elastic/plastic interface

nw rigid/elastic wave front

n0 inner radius where the effective stress vanishes

q density of the deformed field

q0 reference density of the undeformed stress free state

r Cauchy stress tensor
�r Jaumann stress rate
re effective stress

rh hydrostatic stress

rr, rh ¼ r/ Cauchy stress components in spherical-symmetric field

s Mises effective stress

Superposed dot and superposed prime denote differentiation with respect to time and n respectively.
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compressibility in dynamic spherical cavity expansion has been considered by Forrestal and Luk (1988) for

an elastic/perfectly plastic Tresca solid along with a linear pressure–dilatation relation. A pure power law

for strain-hardening, again for the Tresca material, is examined by Luk et al. (1991), for both compressible

and incompressible elastic response.
In recent years, interest in the problem of penetration into concrete and geomaterial media has promoted

a number of publications on dynamic cavity expansion in pressure sensitive solids. A Mohr–Coulomb type

model in conjunction with elastic/perfectly plastic behavior has been employed by Forrestal and Tzou

(1997) to investigate penetration into concrete targets. Earth penetration is studied by Macek and Duffey

(2000) with Mohr–Coulomb plasticity that allows for damage. Dynamic spherical expansion in brittle

ceramics is investigated by Satapathy (2001), again with a Mohr–Coulomb type constitutive behavior,

assuming that there is no cohesion in the plastic range.

In the present paper, we attempt to present a unified treatment of dynamic spherical expansion in a
pressure sensitive elastoplastic medium (Masri, 2001). Material response is modelled by the hypoelastic

theory for the material with a non-associated Drucker–Prager solid (Durban and Fleck, 1997). The theory

accounts for both elastic and plastic compressibility and allows for arbitrary strain-hardening in the plastic

range.

In the next section, we begin with a brief exposition of the governing dynamic field equations following

the quasi-static spherical cavity expansion analysis of Durban and Fleck (1997). Assuming a self-similar

expansion field we show that the governing system consists of four ordinary differential equations with two

stress components, radial velocity and density as unknowns.
Next, in Section 3, we examine the external elastic field, which is expected to develop at a distance from

the cavity prior to plastic yielding. The governing system is reduced here to just two equations for

the stresses, which can be further simplified, under the assumption of small elastic-stresses, to the stan-

dard linear elastic model. This gives the known elastic dilatation wave speed for the rigid/elastic inter-

face, thus setting the outer limit for the process zone. However, a new observation that emerges from the

elastic solution is the possible existence of a compressive elastic zone where yielding is prevented since the

effective stress remains negative. A simple expression for the location of the inner boundary of that zone is

derived along with a condition for its existence, which is due to plastic pressure sensitivity and Poisson’s
ratio.

The important case of a fully incompressible solid (where both elastic and plastic branches do not admit

volume changes), which is also an extreme case of non-associativity, is discussed in some detail in Section 4.

The velocity profile behaves here as the inverse square of radial distance with the deforming field extending

to infinity. A quadrature type solution is given for the stresses with the elastic/perfectly plastic character-

istic. The location of the elastic/plastic interface and the cavitation pressure are approximated by closed

form expressions at different levels of accuracy. We have found that plastic pressure sensitivity causes an

increase in the cavitation pressure but reduces the size of the plastic zone. These results are supported by a
numerical solution for the stresses in a fully incompressible elastic/power-hardening material. In the ab-

sence of pressure sensitivity, we recover the closed form solution for the incompressible Mises material,

which is valid for any hardening or softening characteristic.

Section 5 is devoted to the material with an associated Drucker–Prager flow rule and we show, with no

further assumptions, that the exact field equations can be reduced to two equations for the stresses. A

few numerical solutions for both compressible and incompressible response reveal the coupled effect of

plastic pressure sensitivity and material inertia in raising the level of cavitation pressure. By comparison,

plastic compressibility appears to be much more important than elastic compressibility at low expansion
velocities.

The paper concludes with an asymptotic analysis of the near cavity plastic boundary layer, for solids

with an associated flow rule. Plastic strain at the cavity’s wall is unbounded but it decays with distance. It is

shown that strain-hardening raises effective stress gradients within the boundary layer.
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2. Steady self-similar dynamic expansion of a spherical cavity

Consider a pressurized spherical cavity (Fig. 1) of instantaneous radius A expanding under self-similar

conditions in an infinite medium. The surrounding spherical-symmetric stress field has the active Cauchy
components rr, rh ¼ r/ with the radial equation of motion
Fig. 1.

dimen

elastic
drr

dR
þ 2

R
ðrr � rhÞ ¼ q _v; ð1Þ
where R is the radial coordinate of a spherical system (R; h;/), with the origin at the center of the cavity, q is

the density, v ¼ _R is the radial material velocity and a superposed dot denotes differentiation with respect to

time. Now, in steady-state expansion we assume that the only independent variable is the non-dimensional

radial coordinate n ¼ R=A. Thus, the time derivative is transformed by the similarity relation (Durban and

Fleck, 1997)
_ð Þ ¼ _n
dð Þ
dn

¼
_R
A

 
� n

_A
A

!
dð Þ
dn

¼
_A
A
ðV � nÞ dð Þ

dn
; ð2Þ
with V ¼ _R= _A denoting the non-dimensional radial velocity; now, since v ¼ _AV we have for constant _A that
_t ¼ _A _V , and it follows from (2) that (1) can be rewritten as
R0
r þ

2

n
ðRr � RhÞ ¼ m2 q

q0

� �
ðV � nÞV 0; ð3Þ
where ðRr;RhÞ ¼ ðrr;rhÞ=E are the non-dimensionalized stresses (with respect to the elastic modulus E),
differentiation with respect to n is denoted by a superposed prime, q0 is the reference density of the
undeformed stress free state and the non-dimensionalized cavity expansion velocity
m ¼
_Affiffiffiffiffiffiffiffiffiffi
E=q0

p ð4Þ
is the ratio between the cavity expansion velocity ( _A) and the axial wave speed in a long elastic rod

ð
ffiffiffiffiffiffiffiffiffiffi
E=q0

p
Þ.
c

ξ=1

cavity

elastic

elastoplastic

undeformed
stress free

p

ξi ξw

Scheme of self similar field in dynamic expansion of a spherical cavity. Cavitation pressure is pc. The radial coordinate n is non-

sionalized with respect to the current radius of the cavity. The rigid/elastic wave front is at n ¼ nw. Plastic yielding occurs at the

/plastic interface n ¼ ni. The remote boundary at infinity is stress free.
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Material response is modelled by the non-associated Drucker–Prager model (Durban and Fleck, 1997)

which centers on the effective stress re and plastic potential g defined by
re ¼ sþ lrh g ¼ sþ grh; ð5Þ

where s is the Mises effective stress, rh––the hydrostatic stress, and parameters (l; g) reflect the plastic

pressure sensitivity. Associated response is recovered when l ¼ g with a further reduction to the Mises solid

for l ¼ g ¼ 0. The elastoplastic flow theory formulation follows from (5) in the hypoelastic form (Durban

and Fleck, 1997),
D ¼ 1þ m
E

� �
�r� 3m

E

� �
_rhIþ

re _�p
g

3S

2s

�
þ g
3
I

�
; ð6Þ
where D is the Eulerian strain rate, r––the Cauchy stress tensor, �r––the Jaumann stress rate, S––the stress

deviator, I––the second order unit tensor, m––Poisson’s ratio and �p––the effective plastic strain and a

known function of re.
The derivation of (6) is based on the usual assumptions employed in constructing an elastoplastic flow

theory; a normality rule for the plastic strain rate, the principle of plastic power equivalence, a Hookean

elastic strain rate and linear decomposition of elastic and plastic strain rates. This constitutive equation can

be used to model the material response of rock, concrete, soil and other porous solids. Experiments show

that the rate of plastic volumetric strain in this kind of materials is below predictions of the associated

model (l ¼ g), and that was the motivation for constructing the non-associated model (06 g < l). Non-

associativity is defined by deviation from associativity through decreasing of g, which models a weaker

material behavior (Durban and Fleck, 1997). Representative values of the parameter l are l ¼ 1:311 for
castlegate sandstone and l ¼ 0:648 for jurrasic shale.

For the spherical symmetric field induced by the cavity expansion, where s ¼ rh � rr and

rh ¼ ðrr þ 2rhÞ=3, we have from (5), with R ¼ re=E and G ¼ g=E, the non-dimensionalized versions of the

effective stress and plastic potential
R ¼ Rh � Rr þ 1
3
lðRr þ 2RhÞ; ð7Þ

G ¼ Rh � Rr þ 1
3
gðRr þ 2RhÞ: ð8Þ
Likewise, the active components of the Eulerian strain rate become
_�r ¼
d _R
dR

¼
_A
A

 !
dV
dn

_�h ¼ _�/ ¼
_R
R
¼

_A
A

 !
V
n
: ð9Þ
Consequently, in the absence of material spin, the tensorial constitutive relation (6) separates into just

two scalar relations, namely
V 0 ¼ ðV � nÞ ðRr

�
� 2mRhÞ0 � 1

�
� g
3

� R
G

� �
�0p

�
; ð10Þ

V
n
¼ ðV � nÞ ½

�
� mRr þ ð1� mÞRh�0 þ

1

2

�
þ g
3

�
R
G

� �
�0p

	
; ð11Þ
where we have used (2).

Finally, conservation of matter requires that
_q
q
þ _�r þ 2 _�h ¼ 0 ð12Þ
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or, on account of (9) and (2),
ðV � nÞ ln0 q
q0

� �
þ V 0 þ 2

V
n
¼ 0: ð13Þ
To sum up, we have four governing equations (3), (10), (11) and (13) with four unknowns (Rr;Rh; V ; q)
whose dependence on n should be determined. Integration of that system is carried from the cavity’s wall

where
n ¼ 1 : V ¼ 1; ð14Þ
to the rigid/elastic interface (wave front) n ¼ nw where we have q ¼ q0, as a stress free condition, and both

velocity and stresses should vanish (Fig. 1) as will be verified in the next section.

In this formulation, the effective plastic strain �p is a given function of R, which describes the plastic

strain-hardening (or softening). Plastic response is activated at the elastic/plastic interface n ¼ ni where �p
vanishes with 1 < ni < nw (Fig. 1). However, for elastic/perfectly plastic response �p is not known a priori

and an extra algebraic equation is obtained from (7), in the post yield range,
Rh � Rr þ
1

3
lðRr þ 2RhÞ ¼ Ry; ð15Þ
where Ry is the non-dimensional yield stress (Ry ¼ Y =E with Y denoting the yield stress). For that particular

model, the elastic/plastic interface n ¼ ni appears where R reaches the value of Ry.
3. The elastic zone

It is conceivable that at a distance from the cavity the deforming medium will respond in a purely elastic

deformation with �p � 0. The constitutive equations (10) and (11) take then the simpler form, with no active

plastic branch,
V 0 ¼ ðV � nÞðRr � 2mRhÞ0; ð16Þ
V
n
¼ ðV � nÞ½�mRr þ ð1� mÞRh�0; ð17Þ
which is now inserted in (13) to yield after integration the density relation
q
q0

¼ exp½�ð1� 2mÞðRr þ 2RhÞ�: ð18Þ
Notice that the additional constant that appears upon integrating (13) has to vanish since q0 is taken as the

stress free value of q.
Subtracting (17) from (16) yields the integrable equation
ln0 1

�
� V

n

�
¼ �ð1þ mÞðRh � RrÞ0 ð19Þ
with the solution
V ¼ nf1� exp½�ð1þ mÞðRh � RrÞ�g; ð20Þ
accounting for the condition that V should vanish at the rigid/elastic interface n ¼ nw where both stress
components vanish alike. Substituting (20) back in (17) results in
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�mR0
r þ ð1� mÞR0

h ¼
1

n
1



� eð1þmÞðRh�RrÞ
�
: ð21Þ
Likewise, we substitute (18) and (20) in the radial equation of motion (3) to obtain
R0
r þ

2

n
ðRr � RhÞ ¼ m2n2ðR0

r � 2mR0
hÞeð1þ4mÞRr�ð4�2mÞRh : ð22Þ
The non-linear coupled system (21) and (22) can be further simplified since for elastic response of common

solids both jRrj and jRhj are extremely small by comparison with unity. Thus, we proceed with the linearized

version
�mR0
r þ ð1� mÞR0

h ¼ � 1þ m
n

ðRh � RrÞ; ð23Þ
R0
r þ

2

n
ðRr � RhÞ ¼ m2n2ðR0

r � 2mR0
hÞ: ð24Þ
The solution of Eqs. (23) and (24) is readily found in the form
Rr ¼ � 2C

3n3
� 2mM2

1� 2m

� �
C
n
þ B; ð25Þ
Rh ¼
C

3n3
� M2

1� 2m

� �
C
n
þ B; ð26Þ
where ðB;CÞ are integration constants, and
M2 ¼ ð1þ mÞð1� 2mÞ
1� m

m2 ¼
_A
CE

 !2

with CE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞE

ð1þ mÞð1� 2mÞq0

s
: ð27Þ
Here, CE denotes the linear elastic dilatation wave speed and M can be regarded as the cavity expansion

Mach number. The radial material velocity is now obtained from (20), (25) and (26), as
V ¼ nð1þ mÞðRh � RrÞ ¼ ð1þ mÞ 1
�

�M2n2

 C
n2

; ð28Þ
again, under the assumption that jRrj; jRhj � 1. The location of the wave front n ¼ nw, where V ¼ 0, as

deduced from (28) is
nw ¼ 1

M
¼ CE

_A
; ð29Þ
implying a subsonic expansion field (where M < 1) which in turn defines, by (27), an upper limit on m.
Combining (29) with (25) and (26) we find that the requirement that all stress components vanish at the

rigid/elastic interface n ¼ nw gives
B ¼ 2ð1þ mÞ
3ð1� 2mÞCM

3: ð30Þ
The remaining integration constant C will be determined upon imposing continuity conditions at the
elastic/plastic interface n ¼ ni. Since V should be positive we find from (28) that C must be positive as well.

With the aid of (25), (26) and (30) the effective stress (7) is given, within the elastic zone, by
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R ¼ C
1

n

�
� M

�
1

n2

�
þM

n
� 2ð1þ mÞ
3ð1� 2mÞ lM

2

�
: ð31Þ
A simple algebraic analysis of (31) shows that R remains negative in a region bounded by the rigid/elastic

interface (wave front) nw and an inner radius n0, where R vanishes, given by
1

n0
¼ M

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ð1þ mÞ

3ð1� 2mÞ l

s"
� 1

#
; ð32Þ
under the condition
l >
3ð1� 2mÞ
1þ m

: ð33Þ
This behavior of the effective stress reflects the plastic pressure sensitivity of the Drucker–Prager solid, in
contrast with the Mises solid where the effective stress can never attain negative values. If (33) is violated

then from (32) n0 becomes non-physical (n0 P nw), so R remains positive within the entire elastic field and

vanishes at the wave front. For hardening solids with no definite yield point (like the Ramberg–Osgood

power law family) plastic strain is activated for any positive R. Thus, the existence of n0 is important as the

effective plastic strain is defined only for R > 0, so that initial yield is permissible only in the range of n < n0.
The elastic range, bounded by n0 6 n6 nw, is dominated by hydrostatic compression (rh < 0) which pre-

vents the onset of plastic yield (5). Notice that under condition (33) n0 is located between ni and nw for

elastoplastic solids with a definite yield point, and marks the onset of plastic yielding for solids with no
definite yield point.
4. The incompressible solid

With m ¼ 1
2
we find from (27) that CE ! 1 hence, by (29) nw ! 1 and the elastic zone extends to

infinity.

For incompressible solids there are no density changes during deformation (q � q0) and the mass
conservation equation (13) degenerates to a simple equation on V
V 0 þ 2
V
n
¼ 0 ð34Þ
with the known solution (using the cavity wall condition V ðn ¼ 1Þ ¼ 1)
V ¼ 1

n2
; ð35Þ
over the entire deformation range. Notice that the rate of volumetric strain for the Drucker–Prager model

(6) is given by
I � �D ¼ 3ð1� 2mÞ
E

_rh þ g
re

g
_�p: ð36Þ
Thus, for an incompressible solid, which is plastic non-associated,
m ¼ 1

2
and g ¼ 0; ð37Þ
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implying, by (35), that both constitutive equations (10) and (11) reduce to
R0
h � R0

r þ
R
G
�0p ¼

2

n� n4
: ð38Þ
The radial equation of motion (3) is now
R0
r þ

2

n
ðRr � RhÞ ¼ 2m2 n3 � 1

n5

� �
; ð39Þ
forming together with (38) the governing equations for the two stress components (with R given by (7) and
G ¼ Rh � Rr).

In the outer elastic field (ni 6 n61) where �p � 0 Eqs. (38) and (39) admit the solution
Rr ¼ � 4

3

Z 1

n
ln

x3

x3 � 1

� �
dx
x
� 2m2 1

n

�
� 1

4n4

�
; ð40Þ

Rh ¼ Rr þ
2

3
ln

n3

n3 � 1

� �
; ð41Þ
which is compatible with the stress free condition as n ! 1.
Relations (40) and (41) represent the exact solution for elastic response of the incompressible hypoelastic

solid. However, as n increases, the stresses in (40) and (41) approach asymptotically the values, for n3 � 1,
Rr ¼ � 4

9n3
� 2m2

n
; ð42Þ

Rh ¼
2

9n3
� 2m2

n
: ð43Þ
This approximation coincides of course with the small strain linear elastic solution (25) and (26), at the limit
of m ¼ 1

2
, with B given by (30), when
C ¼ 2

3
; ð44Þ
and the velocity profiles (28) and (35) become identical as well. Notice that, for the incompressible solid, the

entire purely elastic field is in the small strains regime when n3i � 1. Also note that with m ¼ 1
2
we obtain

from (32) that n0 ¼ ð
ffiffiffiffiffiffi
3l

p
mÞ�1

(under the assumption of small strain elastic field). An exact equation for n0
for the incompressible solid can be achieved from the exact elastic solution (40) and (41).

For elastic/perfectly plastic solids we have the yield condition, inside the plastic zone, expressed in (15).

The solution of that equation along with (39) gives the plastic zone stresses (16 n6 ni)
Rr ¼ 2m2 1

a� 1

1

n

��
� 1

na

�
� 1

a� 4

1

n4

�
� 1

na

��
� Pc
na

þ Ry

l
1

�
� 1

na

�
; ð45Þ

Rh ¼ c1Rr þ c2Ry; ð46Þ

where Pc ¼ �Rrðn ¼ 1Þ denotes the non-dimensionalized (Pc ¼ pc=E) cavitation pressure (Fig. 1) and
a ¼ 2l

1þ 2
3
l

c1 ¼
1� 1

3
l

1þ 2
3
l

c2 ¼
1

1þ 2
3
l
: ð47Þ
Continuity of radial stress and plastic yield (15) at the elastic/plastic interface (n ¼ ni) requires that the
elastic stresses (40) and (41) are equal to the plastic stresses (45) and (46) at the interface. By that we obtain

two exact equations, with ni and Pc as unknowns,



Fig. 2.
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ln
n3i � 1

n3i

 !
þ a

Z 1

ni

ln
n3

n3 � 1

� �
dn
n
þ 3

2
am2 1

ni

 
� 1

4n4i

!
þ 3

2
c2Ry ¼ 0; ð48Þ

Pc ¼ 2m2 1

4� a

� �
na�4
i

�
þ 1

1� a

� �
3

4� a

�
� na�1

i

��
� Ry

l
þ 4

3a
nai ln

n3i
n3i � 1

 !
: ð49Þ
The value of ni is determined from (48) by a standard numerical procedure and the corresponding
cavitation pressure follows at once from (49). Sample numerical solutions for the stress profiles are illus-

trated in Fig. 2 for m ¼ 0:25 and with several values of l. The cavitation pressure appears to increase with l
while ni decreases with l.

If lm2 is not too large we may assume that n3i � 1 and replace (40) and (41) by the approximations (42)

and (43). Substituting (42) and (43) in (46) we arrive, for n ¼ ni, at a cubic equation for the elastic/plastic

interface location, namely
1

n3i
� 3lm2

ni
� 3

2
Ry ¼ 0: ð50Þ
Once the physical root of this equation has been located, the cavitation pressure Pc follows, upon equating

(42) with (45) at n ¼ ni and using (50) or simply by applying n3i � 1 to (49), in the form
Pc ¼
4

3a
na�3
i þ 2m2

1� a
3

4� a

�
� na�1

i

�
� Ry

l
: ð51Þ
A useful approximation of ni can be extracted from (50) by expanding the root in powers of lm2, resulting
in the leading terms
1

ni
¼ 3

2
Ry

� �1=3

þ lm2 3

2
Ry

� ��1=3

þ � � � ð52Þ
and this approximation is valid for 3lm2 � ð3
2
RyÞ2=3. However, an alternative expansion of ni, in ascending

powers of Ry, can be written as
Radial stress (Rr) and effective stress (R) profiles at different levels of pressure sensitivity l. Results are for an incompressible

m ¼ 1
2
; g ¼ 0) with elastic/perfectly plastic response (Ry ¼ 0:01). Expansion velocity is m ¼ 0:25.
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1

ni
¼ 3lm2
� 
1=2 þ Ry

4lm2
þ � � � ; ð53Þ
which is valid for 3lm2 � ð3
2
RyÞ2=3 provided that lm2 is not too large. Notice that the first term in (53) is

exactly n�1
0 .

In the absence of pressure sensitivity (l ¼ 0) we recover from (52) the known approximated result (Hill,
1950) ni ¼ ð 2

3Ry
Þ1=3 along with the classical approximate cavitation pressure (Hopkins, 1960), from (51),
Pc ¼
2

3
Ry ln

2

3Ry

� �
þ 2

3
Ry þ

3

2
m2: ð54Þ
In the same spirit it is possible to obtain approximate solutions of (49), with the aid of (50)–(53), at

different levels of accuracy. Using (50) we can rewrite (51) in the equivalent form
Pc ¼
Ry

l
ðnai � 1Þ þ 2m2

1� a
3

4� a

�
� ana�1

i

�
þ 2ana�3

i

3lð3� aÞ ð55Þ
and a further substitution of the first order approximations (52) and (53) results in the useful expressions
Pc ¼
Ry

l
2

3Ry

� �a
3

"
� 1

#
þ 2m2

1� a
3

4� a

"
� a

2

3Ry

� �a�1
3

#
þ 2a
3lð3� aÞ

2

3Ry

� �a
3
�1

ð56Þ
for 3lm2 � ð3
2
RyÞ2=3 � 1, and
Pc ¼
Ry

l

ffiffiffiffiffiffi
3l

p
m

� ��ah
� 1
i
þ 2m2

1� a
3

4� a

�
� a

ffiffiffiffiffiffi
3l

p
m

� �1�a
�
þ 2a
3lð3� aÞ

ffiffiffiffiffiffi
3l

p
m

� �3�a
ð57Þ
for ð3
2
RyÞ2=3 � 3lm2 � 1.

These relations reveal the influence of pressure sensitivity and non-associativity since plastic incom-

pressibility (g ¼ 0) is here also an extreme case of non-associativity.

Fig. 3 displays the dependence of the cavitation pressure Pc on expansion velocity m and pressure sen-

sitivity l. Both parameters cause an increase in Pc, as they become larger, with a parabolic like influence of
m, but notice that only (56) has an exact parabolic influence of material inertia. The curves in Fig. 3 have
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Variation of cavitation pressure Pc with expansion velocity m for a few values of l. Results are for an incompressible solid

g ¼ 0) with elastic/perfectly plastic response (Ry ¼ 0:01).
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been evaluated numerically from the exact relations (48) and (49) while circle markers represent the

approximation (56), and square markers represent the approximation (57). The top–down arrows indicate

the locations (m� ¼ ð 1
3lÞ

1
2ð3Ry

2
Þ
1
3) where the two approximations (56) and (57) coincide.

For hardening incompressible solids we use the definition of the effective stress in (7) to eliminate Rh

from the governing equations (38) and (39). This leads to a system of two equations for Rr and R, namely
Fig. 4

Expan
c2ðR0 � lR0
rÞ þ

1

c2

RR0 d�p
dR

R� lRr

 !
¼ 2

n� n4
; ð58Þ
R0
r �

2c2
n

ðR� lRrÞ ¼ 2m2 n3 � 1

n5

� �
; ð59Þ
where c2 is defined in (47). These equations can be solved numerically over the plastic range 16 n6 ni for
any hardening characteristic �p. The elastic/plastic interface location n ¼ ni can be found using the elastic

solution (40) and (41) under the boundary condition
n ¼ ni : �p ¼ 0; ð60Þ
which can be translated to a specific condition on R depending on the hardening law. Furthermore, at the

elastic/plastic interface n ¼ ni the stresses should comply with the elastic solution (40) and (41). Figs.

4 and 5 display the stresses and cavitation pressure for a power-hardening solid (�p ¼ 100R2) of the

Ramberg–Osgood type. These figures have been evaluated numerically from (58) and (59).

For the Mises solid (l ¼ 0; c2 ¼ 1) Eq. (58) admits an exact solution for any hardening characteristic,
� ¼ 2

3
ln

n3

n3 � 1

� �
þ ��; ð61Þ
where � ¼ Rþ �p is the total strain and �� is an integration constant. In fact, this solution also covers the

elastic zone where �p � 0, so by (41) we have to take �� ¼ 0. Notice that for the incompressible Mises solid

the total strain does not depend on m. The radial stress follows from (59) as
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. Radial stress (Rr) and effective stress (R) profiles for an incompressible (m ¼ 1
2
; g ¼ 0) power-hardening (�p ¼ 100R2) solid.

sion velocity is m ¼ 0:25 and values of l are shown in the figure.
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Rr ¼ �2

Z 1

n
RðxÞ dx

x
� 2m2 1

n

�
� 1

4n4

�
; ð62Þ
where RðnÞ is given implicitly in (61) and �� ¼ 0. Thus, the cavitation pressure is simply
Pc ¼ 2

Z 1

1

RðnÞ dn
n

þ 3

2
m2: ð63Þ
This can be rewritten with the effective Mises stress as the independent variable in the form
Pc ¼
Z 1

0

Rd�

e
3
2
� � 1

þ 3

2
m2: ð64Þ
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ly plastic response Ry ¼ 0:01 (solid line) and for power-hardening law with �p ¼ 100R2 (dashed line). Values of expansion

y are indicated on curves, but effective stress profile is independent of m.
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The integral, evaluated for any hardening characteristic �ðRÞ, is a purely constitutive parameter. As it

stands, relation (64) is accurate and can be evaluated for any hardening or softening response where the

dependence of � on R is known, including the special case of the elastic/perfectly plastic solid. Fig. 5 displays

an illustration for this accurate relation (designated by circle markers). Fig. 6 shows a few representative
curves for stress profiles in an incompressible Mises solid with perfectly plastic (Ry ¼ 0:01), and power-

hardening response given by �p ¼ 100R2.
5. The solid with the associated flow rule

The associated Drucker–Prager model is obtained when l ¼ g, implying that the plastic potential G is

identical with the effective stress (7) and (8). The constitutive equations (10) and (11) are now given by the

simpler version
V 0 ¼ ðV � nÞ Rr

h
� 2mRh � 1

�
� l

3

�
�p

i0
; ð65Þ

V
n
¼ ðV � nÞ

�
� mRr þ ð1� mÞRh þ

1

2

�
þ l

3

�
�p

�0
: ð66Þ
Inserting (65) and (66) in (13) and integrating over n we get
q ¼ q0e
�H with H ¼ ð1� 2mÞðRr þ 2RhÞ þ l�p; ð67Þ
where again, as in (18), q0 is the stress free reference density.

Next, we subtract (66) from (65) and integrate the equation thus obtained. This gives
V ¼ n 1
�

� e�U



with U ¼ ð1þ mÞðRh � RrÞ þ
3

2
�p; ð68Þ
where the condition that V should vanish at the wave front has been used. Substituting the velocity (68)

back in (66) gives
�
� mRr þ ð1� mÞRh þ

1

2

�
þ l

3

�
�p

�0
¼ 1

n
1
�

� eU


: ð69Þ
Similarly, with the aid of (67) and (68), the equation of motion (3) becomes
R0
r þ

2

n
ðRr � RhÞ ¼ m2n2 Rr

h
� 2mRh � 1

�
� l

3

�
�p

i0
e�H�2U: ð70Þ
A further simplification of (69) and (70) is possible upon elimination of Rh with the aid of the effective

stress relation (7). By that we obtain two equations for Rr and R that can be solved by available numerical

methods. As an example, we have studied (Fig. 7) the effect of pressure sensitivity l on the cavitation

pressure, in the absence of elastic compressibility (m ¼ 1
2
). The coupled effect of m and l appears to be quite

appreciable in increasing the value of Pc. The circle markers in Fig. 7 represent the exact solution (64) for

the incompressible Mises solid. Another illustration to the influence of pressure sensitivity is shown in Fig. 8

which displays the variation of the quasi-static (m ¼ 0) cavitation pressure with the elastic-compressibility

parameter b ¼ 1–2m. The circle markers in Fig. 8 represent the exact solution of Pc for the quasi-static,
elastic compressible Mises solid obtained by Durban and Baruch (1976). Curves of cavitation pressure in an

elastic compressible (m ¼ 1
3
) associated solid are displayed in Fig. 9, as evaluated from Eqs. (69) and (70). By
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comparison, at small values of m, plastic compressibility has a much stronger influence on Pc which is

hardly sensitive to changes in m.
For associated elastic/perfectly plastic solids the effective plastic strain becomes an unknown variable but

we have the extra algebraic equation for the yield condition (15). Here we do not elaborate on this par-

ticular case, but mention briefly that �p is easily eliminated between the constitutive relations (65) and (66).
Also, from (67) and (68) we can write, for the plastic range,
q
q0

¼ 1

�
� V

n

��2
3
l

exp

�
� ð1� 2mÞðRr þ 2RhÞ �

2

3
lð1þ mÞðRh � RrÞ

�
; ð71Þ
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which does not contain �p. Substituting the density ratio (71) in the equation of motion (3) produces a third
equation for the unknowns (Rr;Rh; V ). A further reduction to a system of two equations with two

unknowns (Rr; V ) is straightforward.
6. Asymptotic analysis of the near cavity boundary layer

The behavior of the thin layer adjacent to cavity wall (n ¼ 1) is dominated by the plastic branch of the

constitutive relations (10) and (11), so asymptotically (as n ! 1) � ! �p, and we obtain the near wall

relations for solids with an associated flow rule
V 0 ¼ � 1
�

� l
3

�
ðV � nÞ�0p

V
n
¼ 1

2

�
þ l

3

�
ðV � nÞ�0p: ð72Þ
These relations can be combined to produce the differential relation
dV
V

¼ �2c1
dn
n

ð73Þ
or, recalling that V ðn ¼ 1Þ ¼ 1,
V ¼ n�2c1 : ð74Þ
Introducing now the plastic boundary layer coordinate d ¼ n� 1, with d � 1, we find from (74) the

boundary layer velocity profile
V � 1� 2c1d: ð75Þ
Relations (74) and (75) are valid also for a solid with a non-associated flow rule (G 6¼ R) but with g
replacing l in expression (47) for c1.

Inserting (75) in the second of (72) and integrating we find the asymptotic behavior of the effective plastic
strain, for the solid with an associated flow rule,
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�p �
2

3
ln

1

d

� �
; ð76Þ
indicating, as expected, extremely high levels of strain near the cavity. It is interesting to note that the
leading term (76) is independent of material properties. In Section 7, the curves in Fig. 11 detailing �p near
the wall, corroborate expansion (76) by showing little sensitivity to variations in l and g. The analogous

expansion for the effective stress can be deduced from (76) since �p depends on R. With the power law

�p ¼ KRn, for example, we find
R � 2

3K
ln

1

d

� �� �1
n

; ð77Þ
where (K; n) are material parameters. It can be seen that strain-hardening raises effective stress gradients

within the boundary layer. In Section 4, the curves in Fig. 4 detailing R near the wall, corroborate
expansion (77) by showing little sensitivity to variations in l.

The density is given in (67) and upon neglect of elastic terms (valid only for l > 0), it becomes, within the

cavity boundary layer, for the solid with an associated flow rule,
q � q0e
�l�p � q0d

2
3
l ð78Þ
with the aid of (76).

The asymptotic behavior of the radial stress is obtained from the equation of motion (3) in its asymptotic

version, with the aid of (74) and (78),
R0
r þ

2

n
ðRr � RhÞ ¼ 2m2c1 n�2c1

�
� n�1�4c1



e�l�p ð79Þ
with �p given by (76). Furthermore, the circumferential stress in (79) can be eliminated through the effective

stress relation (7), resulting in a single equation for the radial stress, namely
R0
r þ a

Rr

n
¼ 2c2

R
n
þ 2m2c1 n�2c1

�
� n�1�4c1



e�l�p : ð80Þ
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

V 

solid line:     µ=η=0      
dashed line: µ=η=0.5       
dotted line:   µ=η=1       

. Velocity profiles within near cavity boundary layer. Power-hardening material (�p ¼ 100R2) with m ¼ 0:25 and m ¼ 1
3
. The

totic expression (74) is indicated by circle markers.



1 2 3 4 5
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

ε
p

ρ/ρ
o

V

Σ
r

ξ

solid line:     µ=η=0      
dashed line: µ=η=0.5       
dotted line:   µ=η=1       
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Results are for m ¼ 0:25 and with several values of pressure sensitivity.
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With R regarded as a known function of �p, given by (76), it is possible to evaluate the asymptotic behavior

of Rr by direct integration of (80), employing the condition Rrðn ¼ 1Þ ¼ �Pc. A particularly simple example

is furnished by the perfectly plastic model where R ¼ Ry and (80) gives the asymptotic profile
Rr � �Pc þ 2c2ðRy þ lPcÞdþ m2c1c2ð1þ 2c1Þd2þ
2
3
l; ð81Þ
where we have retained only the leading dynamic term.

The asymptotic expression (74) is compared in Fig. 10 with accurate numerical calculations for the

velocity profile in the near cavity boundary layer. It appears that the validity of (74) decreases with pressure

sensitivity, but remains in good agreement with numerical data near the wall.
7. Concluding remarks

We have presented a detailed analysis of steady-state self-similar expansion of a pressurized spherical

cavity in a pressure sensitive elastoplastic infinite medium. The study covers a wide range of material

parameters pertaining to the Drucker–Prager plasticity model.

Radial dependence of essential field variables (radial stress Rr, effective plastic strain �p, radial velocity V ,
density ratio q=q0) are shown in Fig. 11 for an elastic compressible, perfectly plastic solid with an associated

flow rule. A similar chart is displayed in Fig. 12 for an elastic compressible, power-hardening solid with an

associated flow rule. Both figures are for representative material properties and have been evaluated
numerically from the exact relations derived in this study.

The common observation that can be deduced from Figs. 11 and 12 is that pressure sensitivity increases

the value of jRrj (and hence also the cavitation pressure). Similarly, the radial material velocity increases

with pressure sensitivity. Both the effective plastic strain in Fig. 11, and the effective stress in Fig. 12 are not

much influenced by pressure sensitivity. Variations in density ratio are confined to a narrow zone near the

cavity and show higher boundary layer gradients as pressure sensitivity decreases.

Another important observation related to non-associativity can be deduced upon comparing Fig. 5 with

Fig. 7. It can be seen that non-associativity (deviation from associativity (l ¼ g) through decreasing of g)
induces a weaker material behavior, as expected. The influence of plastic compressibility (g) can also be
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deduced upon comparing Figs. 5 and 7. It can be seen that while the cavitation pressure decreases when

elastic compressibility (b ¼ 1–2m) increases (Fig. 8 and comparison between Figs. 7 and 9) the cavitation
pressure increases when plastic compressibility increases (comparison between Figs. 5 and 7). It is clear that

the strongest material is the associated elastically incompressible material (Fig. 7), so the fully incom-

pressible material discussed in Section 4, which is extremely non-associated, is weaker (Fig. 5).

The blend of analytical, numerical and asymptotic results derived in this study, along with some useful

approximate relations, provides a sound basis for the understanding of dynamic cavity expansion

phenomena in pressure sensitive elastoplastic media. The body of data exposed here is a natural general-

ization of the classical analysis (Hopkins, 1960) for the standard Mises solid. Application to penetration

models allows to account quite accurately for both media porosity and strain-hardening, apart from the
influence of non-associativity. In fact, it should not be difficult to incorporate in the analysis the behavior of

media which exhibits plastic strain softening.
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