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Abstract

The self-similar elastoplastic field induced by dynamic expansion of a pressurized spherical cavity is investigated for
pressure sensitive solids. Material behavior is described by the hypoelastic model of the Drucker-Prager material with a
non-associated flow rule, with arbitrary strain-hardening. We examine in detail the external elastic field, which is ex-
pected to develop at a distance from the cavity prior to plastic yielding. A new observation that emerges from that
elastic solution is the possible existence of a compressive elastic zone where yielding is prevented since the effective stress
remains negative. Simple analytical solutions are given for the fully incompressible elastic/perfectly plastic material with
a non-associated flow rule. In particular, we study the influence of plastic pressure sensitivity on the dynamic cavitation
pressure. A few useful relations are derived for the cavitation pressure which reveal the coupled effect of plastic pressure
sensitivity and material inertia. A separate numerical analysis is given for the fully incompressible strain-hardening solid
with a non-associated flow rule. Several numerical illustrations are presented for the solid with an associated flow rule
along with a plastic boundary layer analysis for the thin singular zone near the cavity wall.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic elastoplastic field induced by a pressurized spherical cavity expanding in an infinite
medium is widely used in simulating penetration phenomena. The simplicity offered by the spherical
symmetric pattern of the deforming material leads to fairly simple, yet accurate, expressions for key
parameters like the resisting force and penetration depth. An extensive review of earlier work has been
given by Hopkins (1960) with emphasis on incompressible Mises elastic/perfectly plastic models. Elastic
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Nomenclature

instantaneous radius of pressurized spherical cavity
cavity expansion velocity (constant)

integration constant in the linear small strains elastic solution
linear elastic dilatation wave speed

Eulerian strain rate tensor

elastic modulus

non-dimensionalized plastic potential

second order unit tensor

material parameter in the Ramberg-Osgood power law
cavity expansion Mach number
non-dimensionalized cavitation pressure

radial coordinate of a spherical system

radial material velocity

stress deviator tensor

non-dimensionalized radial velocity

yield stress

plastic potential

non-dimensionalized cavity expansion velocity
hardening index in the Ramberg-Osgood power law
cavitation pressure

radial material velocity

non-dimensionalized effective stress
non-dimensional yield stress

non-dimensionalized stresses

elastic-compressibility parameter

plastic boundary layer coordinate

total strain

effective plastic strain

€p effective plastic strain rate

&, €9 = €5 Eulerian strain rate components in spherical-symmetric field
n, w parameters to reflect the plastic pressure sensitivity
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v Poisson’s ratio

£ non-dimensional radial coordinate

& elastic/plastic interface

&y rigid/elastic wave front

& inner radius where the effective stress vanishes

0 density of the deformed field

20 reference density of the undeformed stress free state
c Cauchy stress tensor

c Jaumann stress rate

Oe effective stress

Oh hydrostatic stress

oy, 09 = 04 Cauchy stress components in spherical-symmetric field
T Mises effective stress

Superposed dot and superposed prime denote differentiation with respect to time and & respectively.
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compressibility in dynamic spherical cavity expansion has been considered by Forrestal and Luk (1988) for
an elastic/perfectly plastic Tresca solid along with a linear pressure—dilatation relation. A pure power law
for strain-hardening, again for the Tresca material, is examined by Luk et al. (1991), for both compressible
and incompressible elastic response.

In recent years, interest in the problem of penetration into concrete and geomaterial media has promoted
a number of publications on dynamic cavity expansion in pressure sensitive solids. A Mohr—Coulomb type
model in conjunction with elastic/perfectly plastic behavior has been employed by Forrestal and Tzou
(1997) to investigate penetration into concrete targets. Earth penetration is studied by Macek and Duffey
(2000) with Mohr—Coulomb plasticity that allows for damage. Dynamic spherical expansion in brittle
ceramics is investigated by Satapathy (2001), again with a Mohr-Coulomb type constitutive behavior,
assuming that there is no cohesion in the plastic range.

In the present paper, we attempt to present a unified treatment of dynamic spherical expansion in a
pressure sensitive elastoplastic medium (Masri, 2001). Material response is modelled by the hypoelastic
theory for the material with a non-associated Drucker—Prager solid (Durban and Fleck, 1997). The theory
accounts for both elastic and plastic compressibility and allows for arbitrary strain-hardening in the plastic
range.

In the next section, we begin with a brief exposition of the governing dynamic field equations following
the quasi-static spherical cavity expansion analysis of Durban and Fleck (1997). Assuming a self-similar
expansion field we show that the governing system consists of four ordinary differential equations with two
stress components, radial velocity and density as unknowns.

Next, in Section 3, we examine the external elastic field, which is expected to develop at a distance from
the cavity prior to plastic yielding. The governing system is reduced here to just two equations for
the stresses, which can be further simplified, under the assumption of small elastic-stresses, to the stan-
dard linear elastic model. This gives the known elastic dilatation wave speed for the rigid/elastic inter-
face, thus setting the outer limit for the process zone. However, a new observation that emerges from the
elastic solution is the possible existence of a compressive elastic zone where yielding is prevented since the
effective stress remains negative. A simple expression for the location of the inner boundary of that zone is
derived along with a condition for its existence, which is due to plastic pressure sensitivity and Poisson’s
ratio.

The important case of a fully incompressible solid (where both elastic and plastic branches do not admit
volume changes), which is also an extreme case of non-associativity, is discussed in some detail in Section 4.
The velocity profile behaves here as the inverse square of radial distance with the deforming field extending
to infinity. A quadrature type solution is given for the stresses with the elastic/perfectly plastic character-
istic. The location of the elastic/plastic interface and the cavitation pressure are approximated by closed
form expressions at different levels of accuracy. We have found that plastic pressure sensitivity causes an
increase in the cavitation pressure but reduces the size of the plastic zone. These results are supported by a
numerical solution for the stresses in a fully incompressible elastic/power-hardening material. In the ab-
sence of pressure sensitivity, we recover the closed form solution for the incompressible Mises material,
which is valid for any hardening or softening characteristic.

Section 5 is devoted to the material with an associated Drucker—Prager flow rule and we show, with no
further assumptions, that the exact field equations can be reduced to two equations for the stresses. A
few numerical solutions for both compressible and incompressible response reveal the coupled effect of
plastic pressure sensitivity and material inertia in raising the level of cavitation pressure. By comparison,
plastic compressibility appears to be much more important than elastic compressibility at low expansion
velocities.

The paper concludes with an asymptotic analysis of the near cavity plastic boundary layer, for solids
with an associated flow rule. Plastic strain at the cavity’s wall is unbounded but it decays with distance. It is
shown that strain-hardening raises effective stress gradients within the boundary layer.
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2. Steady self-similar dynamic expansion of a spherical cavity

Consider a pressurized spherical cavity (Fig. 1) of instantaneous radius 4 expanding under self-similar
conditions in an infinite medium. The surrounding spherical-symmetric stress field has the active Cauchy
components g, 69 = g4 with the radial equation of motion

do, 2

dR+E(Gr_60):pUa (1)

where R is the radial coordinate of a spherical system (R, 0, ¢), with the origin at the center of the cavity, p is
the density, v = R is the radial material velocity and a superposed dot denotes differentiation with respect to
time. Now, in steady-state expansion we assume that the only independent variable is the non-dimensional
radial coordinate & = R/A. Thus, the time derivative is transformed by the similarity relation (Durban and
Fleck, 1997)

(=¢g= (g‘%)do‘%”‘@d—o )

d¢ d¢’

with'V_ =R /A denoting the non-dimensional radial velocity; now, since v = AV we have for constant 4 that
b = AV, and it follows from (2) that (1) can be rewritten as

2
5z =t (L) - op, 3

¢ Po
where (2, %)) = (0,,09)/E are the non-dimensionalized stresses (with respect to the elastic modulus F),
differentiation with respect to ¢ is denoted by a superposed prime, p, is the reference density of the
undeformed stress free state and the non-dimensionalized cavity expansion velocity

A
m = (4)
VE/po

is the ratio between the cavity expansion velocity (4) and the axial wave speed in a long elastic rod

(VE/po)-

undeformed
stress free

elastic

elastoplastic

&=1 G Sw

Fig. 1. Scheme of self similar field in dynamic expansion of a spherical cavity. Cavitation pressure is p.. The radial coordinate ¢ is non-
dimensionalized with respect to the current radius of the cavity. The rigid/elastic wave front is at & = &,,. Plastic yielding occurs at the
elastic/plastic interface ¢ = ¢;. The remote boundary at infinity is stress free.
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Material response is modelled by the non-associated Drucker—Prager model (Durban and Fleck, 1997)
which centers on the effective stress o, and plastic potential g defined by

Oc =T+ uon g =1+ Noy, (5)

where 7 is the Mises effective stress, a,—the hydrostatic stress, and parameters (u, ) reflect the plastic
pressure sensitivity. Associated response is recovered when y = 5 with a further reduction to the Mises solid
for u = n = 0. The elastoplastic flow theory formulation follows from (5) in the hypoelastic form (Durban
and Fleck, 1997),

14+v 3v oe€, [ 3S
D—( ; )6—<E)dhl+ ;P<2—I+gl>7 (6)
where D is the Eulerian strain rate, 6—the Cauchy stress tensor, 6—the Jaumann stress rate, S—the stress
deviator, I—the second order unit tensor, v—Poisson’s ratio and e,—the effective plastic strain and a
known function of ..

The derivation of (6) is based on the usual assumptions employed in constructing an elastoplastic flow
theory; a normality rule for the plastic strain rate, the principle of plastic power equivalence, a Hookean
elastic strain rate and linear decomposition of elastic and plastic strain rates. This constitutive equation can
be used to model the material response of rock, concrete, soil and other porous solids. Experiments show
that the rate of plastic volumetric strain in this kind of materials is below predictions of the associated
model (¢ = #), and that was the motivation for constructing the non-associated model (0 <7 < p). Non-
associativity is defined by deviation from associativity through decreasing of #, which models a weaker
material behavior (Durban and Fleck, 1997). Representative values of the parameter u are ¢ = 1.311 for
castlegate sandstone and u = 0.648 for jurrasic shale.

For the spherical symmetric field induced by the cavity expansion, where 7= o0y — o, and
on = (0r + 204)/3, we have from (5), with ¥ = ¢./E and G = g/E, the non-dimensionalized versions of the
effective stress and plastic potential

2=2 _Zr+%ﬂ<2r+229)7 (7)
G= Z() — Zr +%1’]<Zr + 22()) (8)

Likewise, the active components of the Eulerian strain rate become

. dR [4a\dv . . R [4\V )
€ = —— = — JE— €) =€) = — = — —.
dR \a)de "R \4)¢
Consequently, in the absence of material spin, the tensorial constitutive relation (6) separates into just
two scalar relations, namely

V=V —¢ {(zrzvzg)’ (1%)@)%] (10)

)(2)4)

F=0-ofl-mra-vmr

where we have used (2).
Finally, conservation of matter requires that

N =

§+ér+2e'9:0 (12)
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or, on account of (9) and (2),

14

(V_f)ln’<ﬁ>+V’+z_:o. (13)
Po ¢

To sum up, we have four governing equations (3), (10), (11) and (13) with four unknowns (2, 2y, V, p)

whose dependence on ¢ should be determined. Integration of that system is carried from the cavity’s wall

where

c=Lr=1, (14)

to the rigid/elastic interface (wave front) ¢ = &, where we have p = p,, as a stress free condition, and both
velocity and stresses should vanish (Fig. 1) as will be verified in the next section.

In this formulation, the effective plastic strain €, is a given function of X, which describes the plastic
strain-hardening (or softening). Plastic response is activated at the elastic/plastic interface £ = ¢; where ¢,
vanishes with 1 < § < ¢, (Fig. 1). However, for elastic/perfectly plastic response €, is not known a priori
and an extra algebraic equation is obtained from (7), in the post yield range,

1
29_2r+§ﬂ(2r+229)22y7 (15)

where Xy is the non-dimensional yield stress (X, = Y /E with ¥ denoting the yield stress). For that particular
model, the elastic/plastic interface ¢ = &; appears where X reaches the value of 2.

3. The elastic zone

It is conceivable that at a distance from the cavity the deforming medium will respond in a purely elastic
deformation with ¢, = 0. The constitutive equations (10) and (11) take then the simpler form, with no active
plastic branch,

Vi=(V =2 - 2vTy), (16)

V /

= V=9t (=), (17)
which is now inserted in (13) to yield after integration the density relation

p%: exp[—(1 — 2v)(Z, + 23,)]. (18)

Notice that the additional constant that appears upon integrating (13) has to vanish since p, is taken as the
stress free value of p.
Subtracting (17) from (16) yields the integrable equation

In’ (1 _g) (02— 5 (19)

with the solution
V=2l —exp[—(1 +v)(Zy — 21)]}, (20)

accounting for the condition that V' should vanish at the rigid/elastic interface & = &, where both stress
components vanish alike. Substituting (20) back in (17) results in
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1
—vZ 4+ (1=, = z [1—eEo=20], (21)
Likewise, we substitute (18) and (20) in the radial equation of motion (3) to obtain
2
i+ E (2, — Zp) = m*E (2 — 2vx))ellH#n-(-2)% (22)

The non-linear coupled system (21) and (22) can be further simplified since for elastic response of common
solids both |X,| and |Xy| are extremely small by comparison with unity. Thus, we proceed with the linearized
version

(s = - 5, (23)
! 2 2220y /
Zr-i—E(Zr—Zg) =mE(2 —2vX)). (24)
The solution of Egs. (23) and (24) is readily found in the form
2C 2vM? \ C
Zr——s—g—(m>z+3, (25)
C M? C
2oy=——| ——=— |=+B 26
"= 38 (1—2v>5+ ! (26)
where (B, C) are integration constants, and
N
,  (T+Ev)(1=2v) 5 A . B (1 =v)E
M= — o, M= . with Cg = T =2 (27)

Here, Cg denotes the linear elastic dilatation wave speed and M can be regarded as the cavity expansion
Mach number. The radial material velocity is now obtained from (20), (25) and (26), as
C
V:é(1+v)(20—2r):(1+v)(1—M252)?, (28)
again, under the assumption that |X,|,|2y| < 1. The location of the wave front & = &, where V' =0, as
deduced from (28) is
L G

éw:_

T 29)

implying a subsonic expansion field (where M < 1) which in turn defines, by (27), an upper limit on m.
Combining (29) with (25) and (26) we find that the requirement that all stress components vanish at the
rigid/elastic interface & = &, gives

2(1+v)

B=301-2y

CM>. (30)
The remaining integration constant C will be determined upon imposing continuity conditions at the
elastic/plastic interface & = &;. Since V should be positive we find from (28) that C must be positive as well.
With the aid of (25), (26) and (30) the effective stress (7) is given, within the elastic zone, by
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A simple algebraic analysis of (31) shows that X remains negative in a region bounded by the rigid/elastic
interface (wave front) &, and an inner radius &£,, where X vanishes, given by

1 M 8(1+v)
___[ 1*73(1_2@“‘1]7 (32)

under the condition

3(1—2v)

14+v (33)

o>

This behavior of the effective stress reflects the plastic pressure sensitivity of the Drucker—Prager solid, in
contrast with the Mises solid where the effective stress can never attain negative values. If (33) is violated
then from (32) £, becomes non-physical (&, > &), so X remains positive within the entire elastic field and
vanishes at the wave front. For hardening solids with no definite yield point (like the Ramberg-Osgood
power law family) plastic strain is activated for any positive 2. Thus, the existence of &, is important as the
effective plastic strain is defined only for X~ > 0, so that initial yield is permissible only in the range of & < &,.
The elastic range, bounded by &, < &< &, is dominated by hydrostatic compression (o, < 0) which pre-
vents the onset of plastic yield (5). Notice that under condition (33) &, is located between &; and &, for
elastoplastic solids with a definite yield point, and marks the onset of plastic yielding for solids with no
definite yield point.

4. The incompressible solid

With v :% we find from (27) that Cg — oo hence, by (29) &, — oo and the elastic zone extends to
infinity.

For incompressible solids there are no density changes during deformation (p = p,) and the mass
conservation equation (13) degenerates to a simple equation on V'

Vv
V422 =0 (34)
¢
with the known solution (using the cavity wall condition V(¢ =1) = 1)
1

over the entire deformation range. Notice that the rate of volumetric strain for the Drucker—Prager model

(6) is given by

3(1 —2v)
E

I-D= @+n§g. (36)

Thus, for an incompressible solid, which is plastic non-associated,

1
v=3 and 5 =0, (37)
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implying, by (35), that both constitutive equations (10) and (11) reduce to
z, 2
X -2+ = .
tg6h = e (38)

The radial equation of motion (3) is now

3
z:+§<zr—zo>=2m2(égl), (39)

forming together with (38) the governing equations for the two stress components (with 2 given by (7) and
G=2)—2)).
In the outer elastic field (& < & < oo) where €, = 0 Egs. (38) and (39) admit the solution

4 [ x3 dx 1 1
Zr:—g/: ln(x3_1>7—2m2<z—4—é4), (40)

2 &
Z():Zr—|—§1n (m), (41)

which is compatible with the stress free condition as ¢ — oco.

Relations (40) and (41) represent the exact solution for elastic response of the incompressible hypoelastic
solid. However, as ¢ increases, the stresses in (40) and (41) approach asymptotically the values, for & > 1,

4  2m?
= 42
> 9 ¢ (42)
2 2m?

This approximation coincides of course with the small strain linear elastic solution (25) and (26), at the limit
of v =1, with B given by (30), when

2
C== 44
3’ (44)
and the velocity profiles (28) and (35) become identical as well. Notice that, for the incompressible solid, the
entire purely elastic field is m the small strains regime when 5 > 1. Also note that with v =] we obtain

from (32) that &, = (1/3u m) (under the assumption of small strain elastic field). An exact equdtlon for &,
for the incompressible solid can be achieved from the exact elastic solution (40) and (41).

For elastic/perfectly plastic solids we have the yield condition, inside the plastic zone, expressed in (15).
The solution of that equation along with (39) gives the plastic zone stresses (1 < &< &)

1 1 1 1 1 i 7& & 7i
22’"{ («: é) w—4 <64 éﬂ 6“+u(1 g) *3)

2p =712 + 722y, (46)
where P, = —X,(¢ = 1) denotes the non-dimensionalized (P. = p./E) cavitation pressure (Fig. 1) and
2u 1 - %,u 1
= = e (47)
1+ %,u P+ %,u Rt %,u

Continuity of radial stress and plastic yield (15) at the elastic/plastic interface (¢ = &) requires that the
elastic stresses (40) and (41) are equal to the plastic stresses (45) and (46) at the interface. By that we obtain
two exact equations, with & and P. as unknowns,
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3. 00 3 d 3 1 1 3

1 1 >, 4 3
Pczzmsz)éf“‘Jr (1 a) (43.%_6?1)} —Iy+£q?1n (53% ) (49)

The value of ¢ is determined from (48) by a standard numerical procedure and the corresponding
cavitation pressure follows at once from (49). Sample numerical solutions for the stress profiles are illus-
trated in Fig. 2 for m = 0.25 and with several values of u. The cavitation pressure appears to increase with u
while & decreases with p.

If um? is not too large we may assume that ff > 1 and replace (40) and (41) by the approximations (42)
and (43). Substituting (42) and (43) in (46) we arrive, for ¢ = &;, at a cubic equation for the elastic/plastic
interface location, namely

- —1%,=0. (50)

Once the physical root of this equation has been located, the cavitation pressure P, follows, upon equating
(42) with (45) at ¢ = & and using (50) or simply by applying & > 1 to (49), in the form

4, 2m? 3 el 2y
P°_3_oc£i +1—oc<4—oc_éi >_I (1)

A useful approximation of & can be extracted from (50) by expanding the root in powers of um?, resulting
in the leading terms

1 3 1/3 3 -1/3

and this approximation is valid for 3um* < (3 Zy)z/ 3. However, an alternative expansion of ¢;, in ascending
powers of Xy, can be written as

-0.1+ . solid line:  p=0
/7 dashed line: p=0.5
-0.15f /i dotted line:  p=1

1 2 3 4 5 6 7 8 9 10

Fig. 2. Radial stress (X;) and effective stress (X) profiles at different levels of pressure sensitivity u. Results are for an incompressible
solid (v = %,n = 0) with elastic/perfectly plastic response (2, = 0.01). Expansion velocity is m = 0.25.
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l _ 2\1/2 2y
& () +4,um2

e (53)

which is valid for 3um®* > (3 Zy)z/ ? provided that um? is not too large. Notice that the first term in (53) is
exactly &'

In the absence of pressure sensitivity (u = 0) we recover from (52) the known approximated result (Hill,
1950) & = (3%)1/ ? along with the classical approximate cavitation pressure (Hopkins, 1960), from (51),

2 2 2 3
y

In the same spirit it is possible to obtain approximate solutions of (49), with the aid of (50)—(53), at
different levels of accuracy. Using (50) we can rewrite (51) in the equivalent form

2y 2m? 3 . 20
PC—?(fi—l)—i—la(A‘—a—océi )+73u(3a) (55)

and a further substitution of the first order approximations (52) and (53) results in the useful expressions

s (7 20\ wm? [ 3 2\F 2 2 \§!
P="(=) -1 | = = (= 56
H (323') ‘|+1_°‘[4_°‘ OC(3"v‘y> Jr3/“‘<3_°‘)(32y) 6)

for 3um® < 32, < 1, and

PR () P [ T ()T )

1 -«

for 32,)"* < 3um® < 1.

These relations reveal the influence of pressure sensitivity and non-associativity since plastic incom-
pressibility (y = 0) is here also an extreme case of non-associativity.

Fig. 3 displays the dependence of the cavitation pressure P. on expansion velocity m and pressure sen-
sitivity u. Both parameters cause an increase in P., as they become larger, with a parabolic like influence of
m, but notice that only (56) has an exact parabolic influence of material inertia. The curves in Fig. 3 have

091
o
o S
081 o
A _ o oo ®
0.7} solid Ilne.. u=0 o 2%,
dashed line: p=0.5 @ 8 4
0.6 dotted line: p=1 o w° a
0 a
4
7z

oU

Fig. 3. Variation of cavitation pressure P. with expansion velocity m for a few values of u. Results are for an incompressible solid
v= %,n = 0) with elastic/perfectly plastic response (2, = 0.01).
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been evaluated numerically from the exact relations (48) and (49) while circle markers represent the
approximation (56), and square markers represent the approximation (57). The top—down arrows indicate

the locations (m* = (31—“)%(3%)%) where the two approximations (56) and (57) coincide.

For hardening incompressible solids we use the definition of the effective stress in (7) to eliminate X
from the governing equations (38) and (39). This leads to a system of two equations for 2, and X, namely

) I A0
(2 _“ZF)JFZ(Z—;@) i (58)
3
z;—?(s—uz»:zm{ééf), (59)

where 7y, is defined in (47). These equations can be solved numerically over the plastic range 1 < & < ¢&; for
any hardening characteristic €,. The elastic/plastic interface location ¢ = ¢; can be found using the elastic
solution (40) and (41) under the boundary condition

(=66 =0, (60)

which can be translated to a specific condition on X depending on the hardening law. Furthermore, at the
elastic/plastic interface ¢ = &; the stresses should comply with the elastic solution (40) and (41). Figs.
4 and 5 display the stresses and cavitation pressure for a power-hardening solid (e, = 1002?) of the
Ramberg-Osgood type. These figures have been evaluated numerically from (58) and (59).

For the Mises solid (# = 0,7, = 1) Eq. (58) admits an exact solution for any hardening characteristic,

2 &
62311'1 (53—_1) + €4, (61)

where € = X + ¢, is the total strain and e, is an integration constant. In fact, this solution also covers the
elastic zone where €, = 0, so by (41) we have to take €, = 0. Notice that for the incompressible Mises solid
the total strain does not depend on m. The radial stress follows from (59) as

0.2¢

5 solid line:  u=0
i~ dashed line: pu=0.5
—02r v dotted line: p=1
r”';
-0.3);
-0.4

2 3 4 5 6 7 8 9 10

Fig. 4. Radial stress (Z,) and effective stress (X) profiles for an incompressible (v =1, = 0) power-hardening (e, = 100X?) solid.

Expansion velocity is m = 0.25 and values of u are shown in the figure.

1
2
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091
0.8}
. ’
07y solid line:  p=0 R
o6l dashed line: p=0.5 o,
. s - ,
Pc dotted line:  p=1 ,
051

04r

0.3

021

0.1

Fig. 5. Variation of cavitation pressure P. with expansion velocity m for an incompressible material (v =31, = 0) with a power law
characteristic (¢, = 1002?). Values of pressure sensitivity parameter are indicated in the figure. Circle markers show the exact Mises
results from (64).

*© dx 1 1

where X(¢) is given implicitly in (61) and e, = 0. Thus, the cavitation pressure is simply

© d¢ 3
P, :2/ 2(5)—5+7m2. (63)
1 ¢ 2
This can be rewritten with the effective Mises stress as the independent variable in the form
« 2d 3
PC — / 3—6 _|_ _mz. (64)
0 ei‘ —_ 1 2

Fig. 6. Radial stress (X;) and effective stress (2) profiles for an incompressible Mises solid (u =1 =0,v = %). Results are for elastic/
perfectly plastic response Zy = 0.01 (solid line) and for power-hardening law with €, = 1002* (dashed line). Values of expansion
velocity are indicated on curves, but effective stress profile is independent of m.
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The integral, evaluated for any hardening characteristic €(X), is a purely constitutive parameter. As it
stands, relation (64) is accurate and can be evaluated for any hardening or softening response where the
dependence of € on X is known, including the special case of the elastic/perfectly plastic solid. Fig. 5 displays
an illustration for this accurate relation (designated by circle markers). Fig. 6 shows a few representative
curves for stress profiles in an incompressible Mises solid with perfectly plastic (Xy = 0.01), and power-
hardening response given by €, = 10022

5. The solid with the associated flow rule
The associated Drucker—Prager model is obtained when u = 5, implying that the plastic potential G is

identical with the effective stress (7) and (8). The constitutive equations (10) and (11) are now given by the
simpler version

V= -9z -2z - (1 —g)ep}', (65)
Z:(V—f){—vlr—k(l—v)lg—&—(;—Fg)ep]/. (66)

Inserting (65) and (66) in (13) and integrating over ¢ we get
p=pe® with 0= (1—-2v)(Z +2%) + uep, (67)

where again, as in (18), p, is the stress free reference density.
Next, we subtract (66) from (65) and integrate the equation thus obtained. This gives

. 3
V=2¢(1—e®) with <D:(1+v)(29—2r)+§ep, (68)
where the condition that V' should vanish at the wave front has been used. Substituting the velocity (68)

back in (66) gives

1 !
—vZi+ (1 =v)Zp + S+ | =z (1-¢"). (69)
23 14
Similarly, with the aid of (67) and (68), the equation of motion (3) becomes
! 2 4 u ! —O—
5+ (5 ) :ngz[zﬁzvzof (1 fg)ep} e 020, (70)

A further simplification of (69) and (70) is possible upon elimination of X, with the aid of the effective
stress relation (7). By that we obtain two equations for X, and X that can be solved by available numerical
methods. As an example, we have studied (Fig. 7) the effect of pressure sensitivity 1 on the cavitation
pressure, in the absence of elastic compressibility (v = 1). The coupled effect of m and u appears to be quite
appreciable in increasing the value of P.. The circle markers in Fig. 7 represent the exact solution (64) for
the incompressible Mises solid. Another illustration to the influence of pressure sensitivity is shown in Fig. 8
which displays the variation of the quasi-static (m = 0) cavitation pressure with the elastic-compressibility
parameter f = 1-2v. The circle markers in Fig. 8 represent the exact solution of P. for the quasi-static,
elastic compressible Mises solid obtained by Durban and Baruch (1976). Curves of cavitation pressure in an
elastic compressible (v = %) associated solid are displayed in Fig. 9, as evaluated from Egs. (69) and (70). By
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1 solid line:  p=n=0

dashed line: y=n=0.5 ,
08l dotted line: p=n=1 4

Fig. 7. Variation of cavitation pressure P. with expansion velocity m for an elastic incompressible (v = %) associated solid. Power-
hardening law with €, = 10022, Circle markers show the exact Mises results from (64).
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Fig. 8. Variation of cavitation pressure P, for quasi-static (m = 0) expansion in an elastic compressible (f = 1 — 2v) associated solid.
Power-hardening law with ¢, = 100%2. Circle markers show the exact Mises solution (Durban and Baruch, 1976).

comparison, at small values of m, plastic compressibility has a much stronger influence on P. which is
hardly sensitive to changes in v.

For associated elastic/perfectly plastic solids the effective plastic strain becomes an unknown variable but
we have the extra algebraic equation for the yield condition (15). Here we do not elaborate on this par-
ticular case, but mention briefly that €, is easily eliminated between the constitutive relations (65) and (66).
Also, from (67) and (68) we can write, for the plastic range,

P A% 2
e <1_5> exp{—(1—2v)(2r+229)—3,u(l+V)(Za—2r) ; (71)
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Fig. 9. Effect of pressure sensitivity and expansion velocity on cavitation pressure in an elastic compressible (v = 1) associated solid.
Power-hardening law with ¢, = 10037

which does not contain ¢,. Substituting the density ratio (71) in the equation of motion (3) produces a third
equation for the unknowns (X, Xy, V). A further reduction to a system of two equations with two
unknowns (2, V) is straightforward.

6. Asymptotic analysis of the near cavity boundary layer

The behavior of the thin layer adjacent to cavity wall (£ = 1) is dominated by the plastic branch of the
constitutive relations (10) and (11), so asymptotically (as £ — 1) € — ¢,, and we obtain the near wall
relations for solids with an associated flow rule

— (1-MYr_oe T (Lim\y_ae
V' = (1 3)(1/ &)e, 5—<2+3>(V &), (72)
These relations can be combined to produce the differential relation
dv dé
= o, 73
Vv g (73)
or, recalling that V(¢ =1) =1,
V = 5*2?’1 . (74)

Introducing now the plastic boundary layer coordinate 6 = ¢ — 1, with 6 <« 1, we find from (74) the
boundary layer velocity profile

Vo~ 1= 29,6 (75)

Relations (74) and (75) are valid also for a solid with a non-associated flow rule (G # X) but with 5
replacing u in expression (47) for y,.

Inserting (75) in the second of (72) and integrating we find the asymptotic behavior of the effective plastic
strain, for the solid with an associated flow rule,
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2 1
Ep’\/gln <5>, (76)

indicating, as expected, extremely high levels of strain near the cavity. It is interesting to note that the
leading term (76) is independent of material properties. In Section 7, the curves in Fig. 11 detailing €, near
the wall, corroborate expansion (76) by showing little sensitivity to variations in u and . The analogous
expansion for the effective stress can be deduced from (76) since ¢, depends on 2. With the power law
ep = K2", for example, we find

5o [;{m(;)] (77)

where (K, n) are material parameters. It can be seen that strain-hardening raises effective stress gradients
within the boundary layer. In Section 4, the curves in Fig. 4 detailing X near the wall, corroborate
expansion (77) by showing little sensitivity to variations in p.

The density is given in (67) and upon neglect of elastic terms (valid only for p > 0), it becomes, within the
cavity boundary layer, for the solid with an associated flow rule,

P~ poe 0 ~ o (78)

with the aid of (76).
The asymptotic behavior of the radial stress is obtained from the equation of motion (3) in its asymptotic
version, with the aid of (74) and (78),

2 , ;
Zi+ 5 (2 = Zo) = 20y, (&7 —gT)ere (79)
with ¢, given by (76). Furthermore, the circumferential stress in (79) can be eliminated through the effective
stress relation (7), resulting in a single equation for the radial stress, namely

z, z Cay i
+ 1= 2«/22 o+ 2Py, (E7 = ET e, (80)

solid line:  p=n=0

O"-.
09r A 2., dashed line: u=n=0.5

Q
_ oo dotted line: p=n=1

0.7r

0.61

0.4r

0.3r

0.2
1

Fig. 10. Velocity profiles within near cavity boundary layer. Power-hardening material (¢, = 1002%) with m = 0.25 and v =1. The
asymptotic expression (74) is indicated by circle markers.



5714 D. Durban, R. Masri | International Journal of Solids and Structures 41 (2004) 5697-5716

1.2

i ‘.7-.7"':‘-,,‘
0.8f solid line:  pu=n=0
Y dashed line: p=n=0.5

0.6
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Fig. 11. Radial profiles of essential field variables for an elastic compressible (v = %) perfectly plastic (Xy = 0.01) associated solid.
Results are for m = 0.25 and with several values of pressure sensitivity.

With 2 regarded as a known function of ¢, given by (76), it is possible to evaluate the asymptotic behavior
of X, by direct integration of (80), employing the condition X,(¢ = 1) = —P,. A particularly simple example
is furnished by the perfectly plastic model where X~ = X, and (80) gives the asymptotic profile

Z‘r ~ _Pc + 2?2(2)' + ,LLPC)é + mzyl’yZ(l + 2'})1)52+’%ﬂ7 (81)

where we have retained only the leading dynamic term.

The asymptotic expression (74) is compared in Fig. 10 with accurate numerical calculations for the
velocity profile in the near cavity boundary layer. It appears that the validity of (74) decreases with pressure
sensitivity, but remains in good agreement with numerical data near the wall.

7. Concluding remarks

We have presented a detailed analysis of steady-state self-similar expansion of a pressurized spherical
cavity in a pressure sensitive elastoplastic infinite medium. The study covers a wide range of material
parameters pertaining to the Drucker—Prager plasticity model.

Radial dependence of essential field variables (radial stress 2, effective plastic strain ¢, radial velocity ¥,
density ratio p/p,) are shown in Fig. 11 for an elastic compressible, perfectly plastic solid with an associated
flow rule. A similar chart is displayed in Fig. 12 for an elastic compressible, power-hardening solid with an
associated flow rule. Both figures are for representative material properties and have been evaluated
numerically from the exact relations derived in this study.

The common observation that can be deduced from Figs. 11 and 12 is that pressure sensitivity increases
the value of |Z,| (and hence also the cavitation pressure). Similarly, the radial material velocity increases
with pressure sensitivity. Both the effective plastic strain in Fig. 11, and the effective stress in Fig. 12 are not
much influenced by pressure sensitivity. Variations in density ratio are confined to a narrow zone near the
cavity and show higher boundary layer gradients as pressure sensitivity decreases.

Another important observation related to non-associativity can be deduced upon comparing Fig. 5 with
Fig. 7. It can be seen that non-associativity (deviation from associativity (u = 1) through decreasing of #)
induces a weaker material behavior, as expected. The influence of plastic compressibility (1) can also be



D. Durban, R. Masri | International Journal of Solids and Structures 41 (2004) 5697-5716 5715

1.2

08f solid line:  u=n=0
dashed line: p=n=0.5
dotted line: 1

[
0.6 ¢

0.4F:

Fig. 12. Radial profiles of essential field variables for an elastic compressible (v = %) power-hardening (¢, = 100X?) associated solid.
Results are for m = 0.25 and with several values of pressure sensitivity. Variations in X are too small to be observed.

deduced upon comparing Figs. 5 and 7. It can be seen that while the cavitation pressure decreases when
elastic compressibility (f = 1-2v) increases (Fig. 8 and comparison between Figs. 7 and 9) the cavitation
pressure increases when plastic compressibility increases (comparison between Figs. 5 and 7). It is clear that
the strongest material is the associated elastically incompressible material (Fig. 7), so the fully incom-
pressible material discussed in Section 4, which is extremely non-associated, is weaker (Fig. 5).

The blend of analytical, numerical and asymptotic results derived in this study, along with some useful
approximate relations, provides a sound basis for the understanding of dynamic cavity expansion
phenomena in pressure sensitive elastoplastic media. The body of data exposed here is a natural general-
ization of the classical analysis (Hopkins, 1960) for the standard Mises solid. Application to penetration
models allows to account quite accurately for both media porosity and strain-hardening, apart from the
influence of non-associativity. In fact, it should not be difficult to incorporate in the analysis the behavior of
media which exhibits plastic strain softening.
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